PHASE I
ARCHAEOLOGICAL
RECONNAISSANCE
SURVEY

RECONSTRUCTION OF
SYLVAN LAKE ROAD
BETWEEN CEDAR RIDGE
ROAD AND FALLS
AVENUE

TOWN OF WATERTOWN,
LITCHFIELD COUNTY,
CONNECTICUT
PHASE I ARCHAEOLOGICAL RECONNAISSANCE SURVEY
RECONSTRUCTION OF SYLVAN LAKE ROAD BETWEEN CEDAR RIDGE ROAD AND FALLS AVENUE

TOWN OF WATERTOWN, LITCHFIELD COUNTY, CONNECTICUT

Prepared For:

Town of Watertown
Department of Public Works
61 Echo Lake Road
Watertown, CT 06795

Prepared By:

Historical Perspectives, Inc.
P.O. Box 529
Westport, CT 06881

Authors:

Cece Saunders, MA, RPA
William Sandy, MA, RPA
Julie Abell Horn, MA, RPA

January 2019
EXECUTIVE SUMMARY

The Town of Watertown proposes the reconstruction of Sylvan Lake Road, from immediately east of the Cedar Ridge Drive and Parkman Street intersection, extending easterly to just west of the Franklin Avenue intersection near the Sylvan Lake Park entrance, a distance of 1835 feet (Figures 1, 2a, and 2b). The project limits include the intersections of Sylvan Lake Road with DiNunzio Road and the Porter and Chester Institute driveway, Falls Avenue, Bushnell Avenue, and Frost Bridge Road. This is a Local Transportation Capital Improvement Program (LOTCIP) project with design funded by the Town of Watertown and construction funded by the State of Connecticut. As part of horizontal roadway improvements, the property at 379 Sylvan Lake Road, which dates to the mid-twentieth century, will be acquired by the Connecticut Department of Transportation (ConnDOT) and demolished.

The proposed construction is subject to various local, state, and federal licenses, permits, and environmental reviews prior to construction. Cultural resources – both historical and archaeological – are one concern to be addressed in the regulatory review. The Connecticut State Historic Preservation Office (SHPO) has reviewed the proposed action in Watertown (Labadia, SHPO, 9/12/2018). The SHPO comments were provided in accordance with the Connecticut Environmental Policy Act (CEPA) and Section 106 of the National Historic Preservation Act (NHPA). SHPO had no objection to the demolition of the structure at 379 Sylvan Lake Road. However, SHPO opined that the Road corridor is considered to be in an archaeologically sensitive area and recommended a professional reconnaissance survey to identify and evaluate archaeological resources that may exist within the proposed project limits.

In response to the SHPO request, Historical Perspectives, Inc. (HPI) has completed the standard initial archaeological assessment as outlined in Connecticut’s Environmental Review Primer for Connecticut’s Archaeological Resources (Primer), a Phase I Archaeological Reconnaissance Survey (Phase I Survey). To address the concerns of the review agency, HPI conducted the survey on the Area of Potential Effect (APE), defined as any location within the limited project site that will experience new subsurface disturbance. Such surveys, as outlined in the Primer, address the potential for significant archaeological features from both the historical era and the precontact (Native American) era. HPI undertook the Phase I Survey of the project site in order to: 1) identify any potential archaeological resources that might have been present on the site; and 2) to field verify the presence/absence of these potential resources.

The Phase IA documentary study found that Sylvan Lake Road may date to the eighteenth or early nineteenth century, and several buildings along the north side of the road between DiNunzio Road and Frost Bridge Road were constructed during the nineteenth century. The project site is located along the shoulders of these existing roads, and while most historic period archaeological resources associated with these early buildings are assumed to be situated on the interior of the individual properties, the presence of archaeological deposits along the roadways in conjunction with these occupations cannot be ruled out in areas where landforms have not been destroyed by disturbance, as noted above.

Based on these results, Phase IB field investigations are warranted for any areas along the project site corridor on the sides of the existing roads that are not clearly disturbed. The roadbeds themselves are considered to be minimally sensitive for archaeological resources due to the deep
sewers that have been excavated beneath them as well as the roadbed work (grading and paving) that likely has destroyed most of the original landform.

The Phase IB field investigation was intended to determine the presence or absence of archaeological resources. The APE was subjected to investigation, with hand excavated STs placed at 15m (50ft) intervals, where feasible, as well as at closer intervals to explore further the location of recovered precontact artifacts. No intact historic period archaeological resources were found, although some STs had historic artifacts in disturbed contexts, as evidenced by the presence of modern material. Much of the project site was excluded from testing because of known prior disturbance and steep slopes (greater than 12%).

Two small precontact loci, both on the north side of Sylvan Lake Road and west of DiNunzio Road, produced a scant number of precontact artifacts of local quartz in several STs. These two loci are separated by 30m (100 ft). In both locations, the distribution of artifacts was very limited. The western loci (Locus 1) had three positive STs, spanning 6m (20 ft) east/west. However, the eastern most of these three tests had a disturbed soil profile. The ROW does not extend far from existing curb, and so excavations were not expanded to the north. The eastern loci (Locus 2) had two positive STs that were 3m apart. However, one of the STs had a disturbed soil profile. At both loci potential archaeological deposits could extend further north and out of the project site. It is also possible that additional undisturbed archaeological deposits could be located beneath the extent of the excavated STs in the two loci.

The Phase IB testing was able to determine the horizontal extent of the two loci in the APE bearing precontact period archaeological materials, west of DiNunzio Road. Based on current project plans, it appears that the western of the two loci (Locus 1) will not be affected by the proposed construction. The proposed curblne will be built in the same place as the existing curb and no other project impacts are planned. The project ROW is wider surrounding the eastern loci (Locus 2), closer to DiNunzio Road. This locus has been defined as narrow and extending from the ROW north to the proposed sedimentation fence, and possibly beyond and out of the project site. It is possible that project plans will affect this locus, including resetting the existing fire hydrant in this area.

Based on these conclusions, HPI recommends that the two loci identified as positive for precontact archaeological materials be avoided during any project construction. The loci, plus a buffer of 5m (16ft) should be marked on construction drawings to minimize any potential unintended impacts to this location. If avoidance is not possible, then project plans should be reviewed to determine the extent of any proposed excavation that could impact these areas. A program of additional archaeological investigation may then be warranted to further delineate the horizontal and vertical extent of any cultural deposits and to determine the significance of any potential resources.
TABLE OF CONTENTS

1.0 INTRODUCTION ... 1

2.0 RESEARCH DESIGN ... 2
 2.1 Resource Definitions ... 2
 2.2 Area of Potential Effect (APE) .. 2
 2.3 Design and Methodology ... 2

3.0 ENVIRONMENTAL SETTING ... 3
 3.1 Geological and Natural Setting .. 4
 3.2 Soils ... 4
 3.3 Current Conditions ... 5

4.0 CULTURAL OVERVIEW .. 6
 4.1 Precontact Background ... 6
 4.2 Precontact Sites in the Vicinity .. 12
 4.3 Historical Background ... 12
 4.4 Historical Sites in the Vicinity .. 14

5.0 SUMMARY OF ARCHAEOLOGICAL POTENTIAL ... 14

6.0 PHASE IB ARCHAEOLOGICAL TESTING ... 15
 6.1 Field Methods .. 15
 6.2 Field Results ... 15

7.0 CONCLUSIONS AND RECOMMENDATIONS .. 17

8.0 REFERENCES ... 20

FIGURES

PHOTOGRAPHS

APPENDIX A: RECORD OF SHOVEL TEST EXCAVATIONS

APPENDIX B: ARTIFACT INVENTORY
LIST OF FIGURES

Figure 1 Project site on Waterbury, CT 7.5 Minute Topographic Quadrangle (U.S.G.S. 2016).

Figure 2a Western portion of project site showing existing conditions (HPI 2018 and Weston & Sampson 2018).

Figure 2b Eastern portion of project site showing existing conditions (HPI 2018 and Weston & Sampson 2018).

Figure 3 Project site on web soil survey (U.S.D.A. 2018).

Figure 4 Project site on Clark’s Map of Litchfield County, Connecticut (Clark 1859).

Figure 5 Project site on County Atlas of Litchfield, Connecticut (Beers 1874).

Figure 6 Project site on Waterbury, CT 15 Minute Topographic Quadrangle (U.S.G.S. 1893).

Figure 7 Project site on 1934 aerial photograph (Fairchild Survey 1934).

Figure 8 Project site on 1951 aerial photograph (Robinson Aerial Survey 1951).

Figure 9 Project site on Waterbury, CT 7.5 Minute Topographic Quadrangle (U.S.G.S. 1968).

Figure 10a Western portion of project site showing existing conditions, locations of archaeological shovel tests and photographs (HPI 2018 and Weston & Sampson 2018).

Figure 10b Eastern portion of project site showing existing conditions, locations of archaeological shovel tests and photographs (HPI 2018 and Weston & Sampson 2018).
LIST OF PHOTOGRAPHS

Field locations shown on Figures 10a and 10b

<table>
<thead>
<tr>
<th>Photograph</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>View looking northeast from ST 12 towards #379 Sylvan Lake Road and showing steep slopes on the north side of the road. Falls Avenue is on right.</td>
</tr>
<tr>
<td>2</td>
<td>View looking east showing the steep slopes on the south side of the road in the middle of the project area.</td>
</tr>
<tr>
<td>3</td>
<td>View looking east from ST 27 on the west side of the project showing steep slopes on the north side of the road.</td>
</tr>
<tr>
<td>4</td>
<td>View looking east at shovel testing radials near ST 26 on the northwest corner of DiNunzio Road and Sylvan Lake Road.</td>
</tr>
<tr>
<td>5</td>
<td>View looking north at ST 24 on the north side of Sylvan Lake Road.</td>
</tr>
<tr>
<td>6</td>
<td>View looking north at ST 2, located on the south side of the bungalow at #379 Sylvan Lake Road.</td>
</tr>
<tr>
<td>7</td>
<td>ST 2 north profile.</td>
</tr>
<tr>
<td>8</td>
<td>South profile of ST 24.</td>
</tr>
<tr>
<td>9</td>
<td>Artifacts from ST 22 Level 2 Fill include bottle glass, whiteware and a post-1958 Lincoln cent.</td>
</tr>
<tr>
<td>10</td>
<td>Quartz flakes from ST 24.</td>
</tr>
<tr>
<td>11</td>
<td>Quartz flake and possible fire-cracked rock (FCR) from ST 26 Level 1A.</td>
</tr>
<tr>
<td>12</td>
<td>Artifacts from ST 30 include a quartz flake and quartzite hammerstone from the upper fill stratum, and 4 quartz flakes, 3 quartz chunks, bottle glass, and redware from the lower fill stratum.</td>
</tr>
</tbody>
</table>
1.0 INTRODUCTION

The Town of Watertown proposes the reconstruction of Sylvan Lake Road, from immediately east of the Cedar Ridge Drive and Parkman Street intersection, extending easterly to just west of the Franklin Avenue intersection near the Sylvan Lake Park entrance, a distance of 1835 feet (Figures 1, 2a, and 2b). The project limits include the intersections of Sylvan Lake Road with DiNunzio Road and the Porter and Chester Institute driveway, Falls Avenue, Bushnell Avenue, and Frost Bridge Road. This is a Local Transportation Capital Improvement Program (LOTCIP) project with design funded by the Town of Watertown and construction funded by the State of Connecticut. As part of horizontal roadway improvements, the property at 379 Sylvan Lake Road, which dates to the mid-twentieth century, will be acquired by the Connecticut Department of Transportation (ConnDOT) and demolished.

The proposed design includes pavement reconstruction, horizontal and vertical alignment improvements, drainage improvements, and replacement of two culverts and extension and rehabilitation of a third. Modifications to horizontal geometry are proposed to improve existing sight line deficiencies along Sylvan Lake Road through the intersection of Falls Avenue. The roadway profile through this intersection will also be modified, raising the roadway roughly two feet to improve the river flow through the Sylvan Lake Road and Falls Avenue culverts along the Turkey Brook East Branch. Both culverts are being replaced as part of this project. A third culvert, located along Sylvan Lake Road just east of Cedar Ridge Drive and Parkman Street, will be rehabilitated. This culvert is over the Turkey Brook West Branch. Additional drainage improvements will be constructed including new catch basins and drainage pipes. Sylvan Lake Road will be widened, providing five-foot wide shoulders for bicycles, and a sidewalk will be installed on one side of the roadway.

The proposed construction is subject to various local, state, and federal licenses, permits, and environmental reviews prior to construction. Cultural resources – both historical and archaeological – are one concern to be addressed in the regulatory review. The Connecticut State Historic Preservation Office (SHPO) has reviewed the proposed action in Watertown (Labadia, SHPO, 9/12/2018). The SHPO comments were provided in accordance with the Connecticut Environmental Policy Act (CEPA) and Section 106 of the National Historic Preservation Act (NHPA). SHPO had no objection to the demolition of the structure at 379 Sylvan Lake Road. However, SHPO opined that the Road corridor is considered to be in an archaeologically sensitive area and recommended a professional reconnaissance survey to identify and evaluate archaeological resources that may exist within the proposed project limits.

In response to the SHPO request, Historical Perspectives, Inc. (HPI) has completed the standard initial archaeological assessment as outlined in Connecticut’s Environmental Review Primer for Connecticut’s Archaeological Resources (Primer), a Phase I Archaeological Reconnaissance Survey (Phase I Survey). To address the concerns of the review agency, HPI conducted the survey on the Area of Potential Effect (APE), defined as any location within the limited project site that will experience new subsurface disturbance. Such surveys, as outlined in the Primer, address the potential for significant archaeological features from both the historical era and the precontact (Native American) era. HPI undertook the Phase I Survey of the project site in order to: 1) identify
any potential archaeological resources that might have been present on the site; and 2) to field verify the presence/absence of these potential resources.

2.0 RESEARCH DESIGN

The research design for the Phase I Survey was based on the Secretary of the Interior’s Standards and Guidelines for Archeology and Historic Preservation (48 Federal Register 44716-44740), the U.S. Department of the Interior Guidelines for Evaluating and Registering Archaeological Properties (Little et al. 2000), and the SHPO’s Primer (Poirier 1987). These standards assure compliance with the review procedures of the Connecticut SHPO.

2.1 Resource Definitions

The basic unit used in determining the historical significance of archaeological resources is the site; any potentially in situ cultural material or feature 50 years of age or older. An isolate or an isolated find is the term used to describe a single artifact with no associated cultural material(s) or feature(s).

2.2 Area of Potential Effect (APE)

The archaeological APE is defined as the area that will experience subsurface impacts as a result of the proposed road improvements. For the Sylvan Lake Road reconstruction project site, the archaeological APE includes all areas where there will be new ground disturbance, including the existing and proposed roadbed alignments and areas of new sidewalks, culverts, other drainage features and subsurface utilities (Figures 2a and 2b).

2.3 Design and Methodology

The purpose of the Phase I survey is to determine the presence or absence of precontact and historic period archaeological resources within the APE. Generally, a Phase I Survey consists of detailed documentation of the existing cultural resources that might be affected by the project and a determination of sensitivity for potential resources that might be present within the APE (Phase IA). Subsequent Phase I field investigations (Phase IB) consist of the systematic shovel testing of areas that are lacking prior disturbance. Testing entails the hand excavation of a series of Shovel Tests (STs) placed at regular intervals, generally 15 meters [m] (49 feet) as per state standards, in order to verify the presence or absence of buried cultural deposits.

The documentary review, or Phase IA, is designed to address two major questions: what is the potential for the Sylvan Lake Road corridor in Watertown to have hosted precontact and historic era archaeological resources of significance and, what is the likelihood that such resources have survived the subsurface disturbances concomitant with subsequent use of the site, including past farm-related activities.

In order to evaluate the potential of recovering precontact cultural remains in the APE, it was essential to:

- Establish the predevelopment conditions of the project site to determine if it may have been hospitable for use by Native Americans;
- Understand regional precontact settlement strategies in each of the Cultural Periods to determine how the project site may have been utilized by Native Americans;
- Establish the historical use of the property and any residential, industrial, or recreational episodes; and,
- Document prior disturbance episodes that may have eliminated potential archaeological site integrity.

Sufficient information was gathered to compare, both horizontally and vertically, the precontact past, the historical past, and the subsurface disturbance record. In order to answer these questions, a series of research tasks was undertaken to collect, synthesize, and review pertinent data in order to establish if Phase IB field investigations were warranted. The following tasks were undertaken in the Phase IA study:

Documentary Research: In order to place the project site in a historical context, local and regional histories were reviewed. Prior archaeological and historical research in Litchfield County helped to provide a basis for much of the contextual overview, but additional materials were reviewed from the Archives and Special Collections at the Thomas J. Dodd Research Center, University of Connecticut and other sources.

Site File Search: A site file search for inventoried archaeological and historical sites was conducted using materials available at the Connecticut State Archaeologist’s office.

Cartographic Review: A cartographic review was conducted to identify use of the land through time. This was essential for establishing historical and modern deposition and disturbance episodes. Historical maps and atlases were collected from the UCONN MAGIC website, and from various online sources. Historical maps provided information on land owners and development, while more modern maps were sought to establish any historical disturbance.

Walkover Survey: A photographic record of the current conditions of the project site was completed on November 3-4, 2018. The walkover survey noted the current conditions of surface integrity and obvious signs of prior subsurface disturbance in the Sylvan Lake Road corridor APE.

3.0 ENVIRONMENTAL SETTING

This section presents a brief outline of the existing and past physical landscape of the project site. Research into the condition of the landscape prior to the era of Euro-American settlement is an essential component of assessing archaeological sensitivity. The existing conditions of the project site have been shaped by geologic events largely associated with the last ice age, Connecticut’s continental climate, and the actions of plant, animal, and human biological communities. The effects of human activity have strongly modified the overall physical aspect of the land in the past three centuries as Euro-American settlement throughout Connecticut has substantially altered the landscape and resource base. However, the Precontact topography and environmental conditions of the project site have an effect on when and where Native American and early Euro-American site use occurred. Therefore, information on the Precontact conditions of the project site can aid in determining which locations may or may not be sensitive for Precontact and early historic archaeological resources.
3.1 Geological and Natural Setting

Watertown is part of the Western Uplands geographic zone which contains varied topography, including gentle hills, alluvial intervals, rugged uplands, and innumerable rivers and streams, some of considerable size and power. Bold and irregular hills and deep valley dominate much of the Western Uplands. Hills and ridge lines generally run from north to south. The story behind these topographic features extends backward nearly one billion years (Rossano 1996:7).

The Cenozoic period, approximately 60 million years ago, coincided with a phenomenon known as the Tertiary Uplift, as Connecticut land surface tilted upward along a fairly even incline, with the northwest corner the highest point and the southwest the lowest. Formerly sluggish streams accelerated, increasing their eroding power and creating the river valleys and hills seen today. The present surface of the state results from this natural “etching” process. Repeated glaciation, the last of which began approximately 85,000 years ago, constituted the final factor shaping the state’s topography. Though the general contours of preexisting valleys and highlands remained largely unaltered, the ice relentlessly ground, gouged, scraped, and polished the landscape (Rossano 1996:8).

Topographical features encountered across the Western Uplands reflect this geological history, and vary greatly within the space of only 10 or 20 miles. That portion of the Western Uplands lying within Litchfield County – such as Watertown – is the most elevated and broken, the height more precipitous, with a few reaching nearly 1,300 feet as the Berkshire Mountains loom in the distance (Rossano 1996:8).

The east and west branches of Turkey Brook cross under Sylvan Lake Road within the project site. Turkey Brook flows southward and merges with Steel Brook in Oakville, which in turn flows east to the Naugatauk River in Waterbury. The topography of the project site ranges from level to gently rolling, with some sections bordering the roadway having steeper slopes. Elevations range from approximately 440-460 feet above sea level (ASL), depending on location.

3.2 Soils

Soils on the Sylvan Lake Road corridor fall within five soil mapping units, as shown on Figure 3. From west to east, they are:

- 260D, Charlton-Urban land complex, 15 to 25 percent slopes;
- 15, Scarboro muck, 0-3 percent slopes;
- 306, Udorthents-Urban land complex;
- 234B, Merrimac-Urban land complex, 0 to 8 percent slope; and
- 308, Udorthents, smoothed.

Properties of the five soil series are further described in the table, below (U.S.D.A. 2018).
Project Site Soils

<table>
<thead>
<tr>
<th>Name</th>
<th>Soil Horizon Depth</th>
<th>Texture</th>
<th>Slope</th>
<th>Drainage</th>
<th>Landform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Charlton Urban land complex</td>
<td>Ap: 0-7 in</td>
<td>FiSaLo</td>
<td>15-25</td>
<td>Well</td>
<td>Ridges, ground moraines, hills</td>
</tr>
<tr>
<td></td>
<td>Bw: 7-22 in</td>
<td>GrlFiSaLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C: 22-65 in</td>
<td>GrlFiSaLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merrimack Urban Land complex</td>
<td>Ap: 0-9 in</td>
<td>SaLo</td>
<td>0-8</td>
<td>Somewhat excessively drained</td>
<td>Kames, eskers, moraines, outwash terraces, outwash plains</td>
</tr>
<tr>
<td></td>
<td>Bw1: 9-16 in</td>
<td>SaLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bw2: 16-24 in</td>
<td>GrlSaLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2C: 24-60 in</td>
<td>StrVGrLCoSa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scarboro muck</td>
<td>Oa: 0-8 in</td>
<td>Mu</td>
<td>0-3</td>
<td>Very poorly</td>
<td>Outwash terraces, outwash deltas, depressions, drainageways</td>
</tr>
<tr>
<td></td>
<td>A: 8-14 in</td>
<td>MuFiSaLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cg1: 14-22 in</td>
<td>Sa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cg2: 22-65 in</td>
<td>GrlSa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents Urban land complex</td>
<td>A: 0-5 in</td>
<td>Lo</td>
<td>0-25</td>
<td>Well</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>C1: 5-21 in</td>
<td>GrlLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2: 21-80 in</td>
<td>VGrLlo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udorthents-smoothed</td>
<td>A: 0-5 in</td>
<td>Lo</td>
<td>0-35</td>
<td>Moderately well drained</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>C1: 5-21 in</td>
<td>GrlLo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C2: 21-80 in</td>
<td>VGrLlo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key: Soils: Lo-Loam, Sa-Sand, Mu-Muck
Other: Grl-Gravel, Fi-Fine, Co-Coarse, V-Very, Str-Stratified

The soil mapping shows that with the exception of those locations surrounding waterways, which have very poorly drained soils, the remaining areas of the project site contain moderately well to excessively drained soils.

3.3 Current Conditions

The Sylvan Lake Road project site is along an 1835-foot long stretch of paved roadway, extending from Cedar Ridge Drive and Parkman Street on the west to Franklin Avenue and the Sylvan Lake Park entrance on the east (Figures 2a, and 2b). As noted above, the project limits include the intersections of Sylvan Lake Road with DiNunzio Road and the Porter and Chester Institute driveway, Falls Avenue, Bushnell Avenue, and Frost Bridge Road.

The project site includes the roadbeds of the affected streets and intersections, which are paved with asphalt, as well as areas bordering the roadway that contain grass, low vegetation, and in some cases, residential driveways, retaining walls, and fences. Some of these areas bordering the roadway are within the existing right-of-way (ROW), other areas will need to be acquired or rights obtained to make modifications, as shown on Figures 2a and 2b. Much of the project site has experienced disturbance from cutting into sloped hillside, grading, and filling for road preparation and utility installations, earthmoving associated with private property modifications within the easement areas, the creation of culverts, and other infrastructure installations and improvements surrounding the two Turkey Brook crossings under Sylvan Lake Road (Photographs 1-5).
The project site runs through an area that was once primarily farmland with limited residences, but since the mid-twentieth century has been divided into a number of residential lots and commercial tracts. The housing stock along Sylvan Lake Road generally dates to the mid to late-twentieth century. Residences are located at the intersection of Sylvan Lake Road and Cedar Ridge Road/Parkman Street on the west, on the south side of Sylvan Lake Road from Falls Avenue to Franklin Avenue, and on the north side of Sylvan Lake Road across from Bushnell Avenue. This last residence, with an address of 379 Sylvan Lake Road, is slated for demolition as part of this project. None of the remaining residences along the project site corridor will be directly affected, although the proposed project will entail work within areas used by the front yards of a number of these residences. Several large commercial properties with buildings dating to the 1980s are located on both sides of Sylvan Lake Road at the DiNunzio Road intersection. Turkey Brook crosses under Sylvan Lake Road in two locations, and Sylvan Lake Park is located just east of the project site.

4.0 CULTURAL OVERVIEW

As part of the federal legislative framework governing the treatment of cultural resources, the SHPO in each of the 50 states has developed a series of historic and thematic contexts within which cultural properties may be understood and evaluated. Historic contexts are generally organized according to time periods and geographic regions within each state, while thematic contexts address patterns of general property or site types.

4.1 Precontact Background

In this report the word Precontact describes the period prior to the use of formal written records by European Americans. For the western hemisphere, the Precontact era also refers to the time before European exploration and settlement of the New World. Archaeologists and historians gain their knowledge and understanding of Native Americans in the Connecticut area from three sources: ethnographic reports, Native American artifact collections, and archaeological investigations. Based on data from these sources, a Precontact cultural chronology has been devised for the Northeast. Precontact periods are traditionally divided into the Paleo-Indian, Archaic, Transitional, and Woodland stages, the Archaic and Woodland usually being subdivided into Early, Middle, and Late substages. The stages are defined by changes in artifact types and assemblages, settlement and subsistence patterns, and cultural systems.

Archaeologists in Connecticut have used archaeological data to establish regional models of Precontact subsistence and settlement patterns. These models, while tentative, provide archaeologists with a baseline for understanding potential resources within the region. This contextual understanding enables an interpretation of archaeological resources and an assessment of Precontact land and resource utilization. The outline presented summarizes the Precontact period for the region, based on long-term archaeological research. It should be noted that as research in the area continues, theoretical issues become more refined, affecting this regional chronology.

Scholars generally characterize Precontact sites by their close proximity to a water source, fresh game, and exploitable natural resources (i.e., plants, raw materials for stone tools, clay veins, etc.). These sites are often placed into three categories: primary (campsites or villages), secondary (tool manufacturing, food processing), and isolated finds (a single or very few artifacts either lost or discarded). Primary sites are often situated in locales that are easily defended against both nature
(weather) and enemies. Secondary sites are often found in the location of exploitable resources (e.g., shell fish, lithic raw materials). Archaeologists currently believe that cultural groups inhabiting the region practiced a settlement and subsistence pattern of seasonal rounds exploiting a diverse array of resources.

Archaeological data strongly indicate that Native Americans arrived in the Northeast following the last glacial period. Conflicting data suggest a Native American presence that pre-dates glaciation; however, post-glacial theory is more widely accepted. During the Wisconsin episode of the Pleistocene in the Northeast, glaciers reached their maximum advance between 18,000 and 16,000 years ago. As glaciers retreated north, gravel deposited along the melting margin formed moraines. Nantucket, Martha’s Vineyard, Long Island and Staten Island are moraines that mark the southern edge of the glacier as it existed about 15,000 years before the present (B.P.). Most of New York and New England deglaciated and landforms became exposed over the next 2000 years. As the ice melted, glacial lakes formed, and eventually swamps formed as these lakes filled with sediment. By 13,000 B.P. flora and fauna began repopulating southern New England.

Paleo-Indian Period (12,500-10,000 BP): Approximately 16,500 years before present (BP) the Wisconsin Glacier began retreating from Southern New England, with portions of southeastern Connecticut and parts of what is now Long Island Sound deglaciated by this time (Gordon 1983; Lavin 2013). By 13,500 BP all of Connecticut was deglaciated, with the tundra environment slowly becoming more hospitable to human habitation. The earliest date of Paleo-Indian habitation in the Northeast thus varies, but it is generally accepted that sites of this period date roughly to 12,500 BP to 10,000 BP. Many also bear evidence of the exploitation of large fauna such as the mammoth, moose-elk, and bison – although none do in Connecticut. There are six excavated Paleo-Indian sites in Connecticut (Lavin 2013). However, there are more than 50 isolated artifact finds across the state, suggesting more widespread habitation and, unfortunately, site degradation. In general, settlement patterns suggest small mobile nomadic groups which utilized a wide range of seasonally available resources (Prindle and Lizee 1989). Expected artifacts include fluted points and flaked stone assemblages. The Paleo-Indian Period is theorized to have ended because of “overspecialized subsistence strategies emphasizing big-game hunting” (Snow 1980).

The earliest archaeological evidence for human occupation in Connecticut for this period is Litchfield County's Templeton Site, 6-LF-21, in the Town of Washington (Moeller 1980). The Institute for American Indian Studies (IAIS), formerly the Shepaug Valley Archaeological Society and the American Indian Archaeological Institute, sponsored excavations at the Templeton site, where fluted points, lithic artifacts and features were associated with Paleo-Indian occupations (Moeller 1980). Radiocarbon dates for Paleo-Indian occupations ranged from 10,190 to 9300 BP (Moeller 1980; McWeeney 1994). The Templeton site was at a wetland setting, and reflected hunting and plant gathering patterns at highly productive habitats (Reeve and Forgacs 1999). Currently, the Templeton site is under renewed investigations by Dr. Zach Singer, a specialist on the Paleo-Indian period. Over the past two years, Dr. Singer, a research fellow at IAIS, has recovered materials to provide new interpretation of raw material section and tool stone use, artifact composition, and intra-site patterning during the Paleo-Indian occupation. Ongoing research in the region will further develop and refine these theoretical models of Paleo-Indian subsistence and settlement (IAIS 2018).
Early Archaic Period (10,000-8,000 BP): The Archaic Period contrasts with the preceding period by a shift in subsistence strategies to a wider variety of plant and animal resources, although this strategy likely originated toward the end of the earlier Paleo-Indian period. This observed subsistence strategy change is most likely a response to the gradual warming of the climate and its effect upon regional faunal and floral resources (McBride 1984). Sea levels continued to rise, and there was an increase in white pine, yellow and gray birch, and oak trees that indicate continued warming and drying. By 9,000 BP Long Island Sound had been flooded, separating Long Island from Connecticut.

A deciduous-coniferous forest emerged because of the milder climate in New England. In Connecticut "the Early Archaic Period is characterized archaeologically by a quartz cobble lithic industry and bifurcate-based projectile points" (Prindle and Lizee 1989). Extensive excavations revealing settlement and tool use were completed at the Dill Farm Site, Site 41-50, in East Haddam with a radiocarbon date of 8,560 BP (Lavin 2013). The Sandy Hill Site in the Mashantucket Pequot reservation dates to between 10,000 to 9,500 BP and bears evidence of subterranean residential lodges in a south-facing sandy hillside (Ibid.). The site also produced plant-food remains representing a wide variety of sources including wetland plants and tubers, nuts, and small game (Ibid.).

Early Archaic sites are more widely distributed than earlier Paleo-Indian sites have been found to be (McBride 1984). Diagnostic artifacts of this period typically include Kirk, Kanawa, and Hardaway stemmed points, Kirk and Palmer corner-notched points, and Plano lanceolate points (Snow 1980). Connecticut Early Archaic sites include Yale University’s Lewis-Walpole site in Farmington, the Dill Farm site in East Haddam, which held bifurcate base points and yielded a radiocarbon date of 8,050 B.P., as well as scattered finds. A series of Early Archaic sites were found along the upper Housatonic River at Robbins Swamp in northwestern Connecticut where several dozen early sites were found in a 40 square-kilometer area during surveys performed by the American Indian Archaeological Institute (now the Institute for American Indian Studies). These sites are reportedly associated with landforms ranging from lake shorelines and upper river terraces to wetland margins and upland springs. They include large, multiple, early component sites, and small, single component, special-activity sites.

Middle Archaic Period (8,000-6,000 BP): The trend toward a drier and warmer climate and greater diversity of faunal and floral resources continued through this period. This trend "brought about the establishment of a deciduous forest which had achieved an essentially modern character by 2,000 BC" (Salwen 1975). Trees associated with this climate included black oak, red oak, mockernut and pignut hickories, hard maple, beech, black and yellow birches, white ash, butternut, basswood, black cherry, and dogwood. The typical shrubs found in this forest type included azalea, blueberry, huckleberry, and mountain laurel (Braun 1950). The first appearance of drought-resistant hickory and warmth-growing American holly demonstrates a climate warmer than today (Lavin 2013).

The increasingly rich and diverse resource base available in the region led to a population increase and a greater record of known Middle Archaic sites. The first known Native American occupation of the Connecticut coastal region occurred during the Middle Archaic Period. Netsinkers and plummets found at sites indicate the growing importance of marine resources (Snow 1980). There
has been a constant presence in this region through several climatic changes and faunal adaptations since that time. Some researchers argue that Middle Archaic occupations in Connecticut demonstrate an orientation toward upland interior microenvironments (Prindle and Lizee 1989), while others have argued that sites appear evenly distributed between riverine and upland areas of Connecticut (McBride 1984).

The Middle Archaic Neville culture complex is identified by three point types: Neville, Stark and Merrimac points. Neville-like points have been recovered from 15 sites in Litchfield County, mostly from Robbins Swamp (Jones 1999). Neville and Stark points have been reported from over 100 sites in Connecticut, but Merrimac points are rare by comparison (Lavin 2013). In the lower Connecticut River Valley, Neville and Stark points have been found in conjunction with bifaces, hammerstones, and ground stone tools suggestive of heavy woodworking activities.

Late Archaic / Terminal Archaic Period (6,000-2,700 BP): There is little agreement on the date of the end of the Archaic Period and the beginning of the Woodland Period, but it is generally accepted that the Late Archaic Period dates to ca. 6,000 to 3,800 BP, while the subsequent Terminal Archaic period dates between 3,800 and 2,700 BP. The existence of numerous perspectives on the demarcation of time periods is indicative of both the large amount of data available and the need for further research.

Numerous sites of this period are known throughout the Northeast. Study has suggested that a seasonally based subsistence pattern was in place with a greatly expanded population base. It is "often considered a period of cultural fluorescence" (Prindle and Lizee 1989) due to occurrences of burials and long-distance exchange networks (Snow 1980). Steatite bowls first made their appearance during this period.

There are two major cultural traditions of the Late Archaic Period: the Laurentian tradition, and the Narrow-Stemmed tradition (McBride 1984). The Laurentian tradition's known diagnostic artifacts include Vosberg, Brewerton, and Otter Creek projectile point styles. Stone tools include pitted stones, net sinkers, spokeshave scrapers, drills and knives, chipped and ground stone ulus, and ground stone pestles, gouges, axes, plummets, adzes, and atlatl weights (aka bannerstones) (Lavin 2013). This tradition is generally marked by a settlement system in which larger populations would gather around a plentiful seasonal resource but then break up into smaller groups during other, less productive seasons. The diagnostic artifacts of the Narrow-Stemmed or Narrow Point tradition include Lamoka, Bare Island, Squibnocket Stemmed, and Poplar Island triangular projectile points. Settlement pattern analysis has suggested a uniform site distribution with "respect to major ecological zones such as floodplains, terraces, and uplands" (McBride 1984).

During the Terminal Archaic period (3,800-2,700 B.P.), steatite or soapstone vessels are first observed. During this period, three cultural traditions persisted in the Northeast. These include the Laurentian tradition represented by the Vergennes phase and the Vosberg complex; the small stemmed tradition represented by the Sylvan Lake complex; and the Susquehanna tradition represented by the Snook Kill and Orient phases (Funk 1976:250). Although some archaeologists define these three separate traditions as persisting in the region, Snow reassesses the distribution of Terminal Archaic points and suggests that the Susquehanna tradition dominated the first half of the period and was comprised of Snook Kill, Perkiomen and Susquehanna Broad points, while the latter
half of the period was dominated by the Orient complex characterized by the Orient Fishtail point (Snow 1980:237). These three cultural traditions, based on unique projectile point types, may represent distinct settlement patterns centered on the use of specific resource niches.

A hallmark of the Terminal Archaic is the introduction of steatite, or soapstone, bowls. These bowls suggest that people were staying long enough in one place to make the use of large, relatively heavy cooking vessels worthwhile. A more sedentary lifestyle and changes in subsistence strategies must also have provided foodstuffs that required heat and longer processing.

Early Woodland Period (2,700-1,650 BP): The first part of the Woodland Period was essentially a continuation of the stylistic traditions of the Late Archaic. It marked a transitional period in which the production and use of ceramics began in earnest, and smoking pipes first appeared in artifact assemblages. Settlement pattern information suggests that the broad based strategies of the Late Archaic continued with a possibly more extensive use of coastal and riverine resources, particularly estuaries and marshes with dense concentrations of food sources. This last point must be qualified since the larger shell middens of the Woodland Period in coastal areas could merely be a reflection of their greater preservation. The global warming trend already mentioned resulted in the rising of sea levels, which may have been responsible for the destruction of many earlier coastal sites.

The Early Woodland Period is characterized by Lagoon, Rossville, and Meadowood projectile points, as well as thick interior and exterior cord-marked ceramics. Sites from this period in Connecticut often contain evidence of a quartz cobble lithic industry and a continuation of the Narrow-stemmed point tradition.

Middle Woodland Period (1,650-975 BP): Research of sites from this period has provided evidence of a significant change in settlement patterns to a more sedentary lifestyle, likely due to the stabilization of environmental fluctuations experienced toward the end of the previous Early Woodland Period. The discovery of large storage pits, larger sites, evidence of oblong pole-framed structures and wigwams further bolsters this supposition (Lavin 2013). In Connecticut, the introduction of maize is evident toward the end of this period, and other horticultural practices may have been utilized at this point as well, though clearly not to the extreme that it was in the subsequent Late Woodland Period. Reliable, predictable sources of food from resource rich environments would have fostered year-round habitation.

Diagnostic artifacts dating to the Woodland Period include Levanna, Orient and Fox Creek projectile points, and various prehistoric ceramics. Fox Creek points, found in coastal New York, began showing up on Connecticut sites. Later Jack’s Reef points appear at sites dating to this period toward the end of the Fox Creek time range, with most points made from exotic cherts, mainly jasper from Pennsylvania (Lavin 2013). Evidence indicates that points were brought to the area as blanks and blades and were traded as finished tools and late-stage bifaces. Ceramic types found in the area included Rocker Stamped, Dentate Stamped, Windsor Fabric-marked, Windsor Brushed, and Windsor Cord-marked pottery.

Late Woodland Period (975 BP to 450 BP): During the Late Woodland Period food items such as maize, beans, and squash (the Three Sisters) were raised through a specialized agricultural
system with the earliest recovered bean seed dating to 550 BP from a site in South Windsor, and maize first dating to 950 BP (Lavin 2013). Early New England settlers described the Native American horticultural practices, with women planting and tending agricultural plots. This radically different subsistence strategy was accompanied by commensurate changes in settlement patterns. Analysis of material culture has suggested significant changes in social organization, long distance trade networks, and an overall increase in population density.

Known sites of this period are much larger than earlier sites. The occurrence of sites found in defensible locations has suggested some degree of regional social conflict possibly due to population pressure. Triangular points are a common diagnostic artifact of this period as well as stamped, cordmarked, brushed, and fabric-marked ceramic designs. The trend toward increasingly focal agricultural economies which became common across much of the Northeast during this period was not supported along coastal zones. There is growing evidence from excavations along the Connecticut and Long Island coasts (Bernstein 2006; Salwen 1975) that a tendency to "expand and diversify the subsistence base" (Bernstein 2006) evolved through the Archaic Period into the Woodland. However, Late Woodland human populations increased less in the upper reaches of the Western Uplands, and in lands to the north, than in other regions of Connecticut.

Contact Period ca. 450 BP:

The initial interactions between Native Americans and Europeans typifies the Contact period, dating from roughly A.D. 1600-1650. At the beginning of this period, Native American settlement patterns were essentially the same as those of the Late Woodland period. Streamside camp sites were occupied in the spring and fall to take advantage of bountiful fish runs. Upland and inland task specific sites were also occupied for short periods for hunting, trapping, and lithic procurement.

The earliest meetings between Native Americans and Europeans transpired when early explorers traded with the native population. As non-indigenous materials were introduced into the native material culture, tool assemblages and settlement and subsistence patterns changed drastically. Traditional stone, bone, and wood tools were replaced by European goods made of copper and iron. Shell beads and wampum were produced, and furs were collected by Native Americans as a medium of exchange. Europeans were eager to procure furs from Native Americans, resulting in many trading posts being established along New England's major tributaries, including the Connecticut River.

Plagues, intertribal stress, and the pursuits of Europeans to obtain land rights resulted in the subsequent breakdown of native socio-political organization during the seventeenth century. The plagues of 1616-1620, inadvertently introduced by Europeans, depopulated many groups with total losses in southern New England estimated at between 70-90 percent of the original population (Snow 1980). Moreover, the conflicts engendered by rapid colonial expansion, war, and epidemics, caused many Native American groups either to leave the area or take up habitation in established communities, i.e. reservations (Ibid.).

As European encroachment on Indian land persisted, these small groups were forced onto smaller and smaller tracts of land, and finally onto reservations. These were small and residents
faced economic hardships. As a result, many of these groups moved into English communities or disbanded.

At the time of initial European settlement the tract called “Mattatuck” – which includes the Watertown area – was the territory of overlapping groups of Algonkian peoples. According to nineteenth-century historian Joseph Anderson, one group known as the Tunxis, lived along the Farmington River, north of Hartford, and one group lived near the mouth of the Housatonic River that also claimed lands to the north and west for a subgroup, the Paugasucks. The Paugasuck/Paugussets (or Derby) Indians lived between the Housatonic and Naugatuck River. It appears that the Watertown area was within or near the commonly accepted bounds of both tribes, but not a central place for either, the lands mainly used as hunting grounds (Howson and Bianchi 2014:17).

4.2 Precontact Sites in the Vicinity

A site file search at the Office of State Archaeology (OSA) indicated that there are three previously recorded precontact sites inventoried within one mile of the project site, numbered 153-1, 153-2, and 153-3. They are the only three sites on file for Watertown (Brian Jones, personal communication, 12/17/2018). All three were recorded as part of the Watertown Renewable Power Plant project on Echo Lake Road, approximately 0.75 mile north of the project site (Walwer and Walwer 2007). The three precontact sites were noted as campsites devoted to the initial procurement and processing of quartz tools. Artifacts included quartz and chertdebitage, with the quartz noted as from the early to middle part of the lithic reduction stream. One quartz percussed knife was found. Two fragments of cord-marked ceramics with sand tempering argue for an Early Woodland temporal association. There have been additional precontact archaeological sites recorded within the Naugatuck River drainage, but at several miles distance from the project site and outside of Watertown (Bianchi and Howson 2015:13).

4.3 Historical Background

While significant contact occurred in the sixteenth and early seventeenth centuries, it was European settlement in the seventeenth and early eighteenth centuries that greatly impacted Native American at several levels. Settlers from Farmington began to seek rights to land in the vicinity of Mattatuck as early as 1657, when lead or graphite mines were purportedly discovered nearby. Purchases were made from both the Tunxis and the Paugasuck, reflecting the groups’ overlapping claims. English land claims to the Western Uplands date to 1665, corresponding with the English conquest of the Dutch in New York. That year, King Charles II granted his brother the Duke of York all lands west of the Connecticut River. Three towns were formed in the Western Uplands during the late seventeenth century: Woodbury (1673), Waterbury (1674), and Derby (1675). However, conflicting town claims and the lack of surveys delayed extensive settlements until the eighteenth century (Rossano 1996:11).

Around 1700, Obadiah Richards settled in the area that is now Upper Middlebury Road, and John Scott homesteaded in the area of Nova Scotia Hill Road. However, by 1710 the men had left for “safer places.” In 1729, a family named Garnsey settled in the section now called Guernseytown, to the northwest of central Watertown. Built in 1735, the Belden saltbox house
on lower Main Street is the oldest extant house in Watertown. With 338 inhabitants, the First Ecclesiastical Society of Westbury was formed in 1738, and 42 years later, in 1780, Westbury separated from Waterbury and gained political autonomy and officially became Watertown (Watertown 2018, Lewis 1881).

It is likely that the project site and vicinity became attractive to settlers during the eighteenth century. As the economy of the region increased, due to shipping and manufacturing opportunities, residents established farms and homesteads. There they farmed grain and tobacco, collected pine tar, and cleared woodland. Along the local streams, grist, saw, and fulling mills were built to process these raw materials. Historic maps do not show the presence of the project site roads during the eighteenth century or early nineteenth century (e.g. Doolittle 1787, Blodget 1792, Warren and Gillet 1811) but this may be an omission of detail rather than the reality. It is likely that the project site and vicinity was used for farmland or woodland during this period.

The first historic maps that specifically show roads within the project site are from the mid-nineteenth century. The 1853 Woodford map indicates the presence of Sylvan Lake Road, Falls Avenue, DiNunzio Road, and Frost Bridge Road, albeit all unlabeled\(^1\). Three structures are shown on the north side of Sylvan Lake Road between DiNunzio Road and Frost Bridge Road. From west to east, they are labeled E. Woodruff, J.W. Warner, and School. The 1859 Clark map (Figure 4) is a more detailed depiction of the same area, and shows the E.S. Woodruff and J.W. Warner properties in the same locations, along with the school building. The 1874 Beers map (Figure 5) indicates the Woodruff house was then attributed to L. Henderson.

Review of federal census records for the nineteenth century suggests that Sylvan Lake Road and at least some of the project site cross roads had been laid out by the 1820s. The 1820 Watertown federal census counted Eleazer S. Woodruff and his family, as well as a number of neighbors whose names appeared on the later 1850s maps in the general area, including the Frost family for whom Frost Bridge Road was named. Eleazer Woodruff was listed in several subsequent federal censuses, although Joseph W. Warner did not appear until the 1850 census for Watertown, as he was listed for Waterbury in the 1830 and 1840 censuses. The Woodruff and Warner families were farmers, according to census records. Eleazer Woodruff in particular was one of the wealthier farmers in the area, based on the value of real estate and personal property holdings ($5000/$1600 in 1860 and $6000/$1150 in 1870).

Both Eleazer Woodruff and Joseph W. Warner died in the 1870s. Woodruff died in 1873, at age 81, and is buried in in Evergreen Cemetery in Watertown, with a substantial odalisque grave marker (www.findagrave.com/memorial/116226549). Warner died in 1876 and is buried in the Old Watertown Cemetery, with a more modest stone marker (www.findagrave.com/memorial/24203525). Although his age at death is not given, based on census records he was approximately 76 years old at that time.

Subsequent historic maps do not indicate ownership or occupants of the three structures on the north side of Sylvan Lake Road between DiNunzio Road and Frost Bridge Road (U.S.G.S. 1893

\(^1\) Due to inaccuracies in surveying, the placement and alignment of the roads varies between maps during the nineteenth century.
Phase I Archaeological Reconnaissance Survey, Reconstruction of Sylvan Lake Road

[Figure 6], 1904). However, it is assumed that the two structures on the west continued to be used as farm residences and the third structure on the east as a school house. The project site corridor remained largely dedicated to farming through the first half of the twentieth century. A 1934 aerial photograph (Figure 7) indicates that Bushnell Avenue and Franklin Avenue had been constructed by this time, and additional houses were beginning to be constructed in the area. Both farm houses on the north side of Sylvan Lake Road were still standing, although the school house had been removed by this time.

During the second half of the twentieth century, the project site and vicinity began to take on its current configuration. A 1951 aerial photograph (Figure 8) shows the infill of additional residences along Sylvan Lake Road and the streets intersecting it on the south. A 1951 U.S.G.S. map confirms that the residence at 379 Sylvan Lake Road had been constructed by this year. Aerial photographs show that the farmhouse on the north side of Sylvan Lake Road once occupied by the Warner family was removed between 1955 and 1966, and the farmhouse once belonging to the Woodruff and Henderson families at the northeast corner of Sylvan Lake Road and DiNunzio Road was removed between 1966 and 1969. A 1968 U.S.G.S. map (Figure 9) still shows the Woodruff/Henderson building. During the 1980s, the two parcels on either side of Sylvan Lake Road between DiNunzio Road on the north and Falls Avenue on the south were developed with commercial buildings. The Porter and Chester Institute campus buildings are located on the south side of Sylvan Lake Road, although this campus has recently closed. A review of utility plans for this project (Figures 2a and 2b) shows that underground utility installations, including water, gas, and sanitary sewers exist under Sylvan Lake Road and adjoining streets. The sewer lines generally are located near the centerline of the streets while the water and gas lines are located nearer to the edges of the streets.

4.4 Historical Sites in the Vicinity

There are no previously reported historic period archaeological sites within a one mile radius of the project site.

5.0 SUMMARY OF ARCHAEOLOGICAL POTENTIAL

Any portions of the project site not disturbed from prior grading associated with roadwork, utility installation, or other earthmoving should be considered sensitive for precontact period archaeological resources. That said, it appears that large portions of the project site have been previously disturbed from these activities, lessening the precontact potential.

The Phase IA documentary study found that Sylvan Lake Road may date to the eighteenth or early nineteenth century, and several buildings along the north side of the road between DiNunzio Road and Frost Bridge Road were constructed during the nineteenth century. The project site is located along the shoulders of these existing roads, and while most historic period archaeological resources associated with these early buildings are assumed to be situated on the interior of the individual properties, the presence of archaeological deposits along the roadways in conjunction with these occupations cannot be ruled out in areas where landforms have not been destroyed by disturbance, as noted above.
Based on these results, Phase IB field investigations are warranted for any areas along the project site corridor on the sides of the existing roads that are not clearly disturbed. The roadbeds themselves are considered to be minimally sensitive for archaeological resources due to the deep sewers that have been excavated beneath them as well as the roadbed work (grading and paving) that likely has destroyed most of the original landform.

6.0 PHASE IB ARCHAEOLOGICAL TESTING

6.1 Field Methods

Phase IB field investigations were designed to ascertain the presence or absence of precontact and/or historical archaeological resources in the project site. The Phase IB fieldwork consisted of the hand excavation of a series of 50x50cm (20x20in) shovel tests (STs) at intervals of approximately 15m (50ft) within the ROW, where feasible.

All excavated soil was sifted through ¼-inch hardware cloth, and each soil stratum encountered during testing was explored and documented, with cultural materials collected by strata in order to determine their context and integrity as well as to ascertain further whether any potential in situ cultural resources or features were extant. Recovered modern material was noted on the field forms, but not collected. Appropriate field notations, drawings, and photographs were made during field investigation.

As previously presented, the Sylvan Lake Road APE exhibits considerable prior disturbance, including locations of cutting and filling undertaken in conjunction with the construction of the roads, walkways, businesses, and utilities in the APE. Further disturbance came from excavations to create the two underground culverts to carry the Turkey Brook drainage near the bungalow at 379 Sylvan Lake Road and east of Cedar Ridge Road. These areas of obvious disturbance and/or steep slopes were excluded from subsurface testing (Photos 1, 2 and 3; Figures 10a and 10b). Therefore, Phase IB testing was undertaken in locations with less than a 12% slope within the APE where prior disturbance was not documented.

6.2 Field Results

Field investigations were conducted under the direction of William Sandy, M.A., R.P.A. with assistance from Jonathan Wiener on November 3, 4, and 10, 2018. A total of 29 STs were excavated at a 15m (50ft) interval in the APE, along with 8 radial STs surrounding tests containing archaeological material (see Figures 10a-b; Appendices A and B). All ST profiles are presented in Appendix A, and recovered artifacts are inventoried in Appendix B. The artifact analysis was completed by William Sandy.

The 29 STs completed at a 15m (50ft) interval were numbered ST 1 through ST 27, ST 36, and ST 37 (Figures 10a-b). Of these STs, 17 had soil profiles consisting entirely of fill (STs 3 through 9, 11 through 20, and 25). An example from the west side of the project site was ST 22.
ST 22

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Soil Type</th>
<th>Color</th>
<th>Artifacts</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-36</td>
<td>Sandy Loam</td>
<td>Brown</td>
<td>Ceramic, glass, drainpipe</td>
<td>Fill</td>
</tr>
<tr>
<td>36-82</td>
<td>Sandy Loam</td>
<td>Very dark brown</td>
<td>Post-1958 penny, glass, ceramic, brick*, concrete*</td>
<td>Fill</td>
</tr>
</tbody>
</table>

*discarded in the field

The penny recovered from ST22 with the Lincoln Memorial on the back dates the disturbance to sometime after this style was introduced in 1958 (the year stamp on the other side is illegible) (Photograph 9). Macadam, also known as asphalt, was commonly found in these tests, and attests to disturbance associated with prior roadwork.

Much of the project site in the vicinity of the east and west branches of Turkey Brook have been modified. The house lot at 379 Sylvan Lake Road appears to have been raised several feet through the introduction of fill within the project site. Three STs (ST 1, ST 2 and ST 3) on this lot had soil profiles showing fill over a possible deeply buried A horizon (Photographs 6 and 7).

ST 2

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Soil Type</th>
<th>Color</th>
<th>Artifacts</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-26</td>
<td>Sandy loam</td>
<td>Dark brown</td>
<td>NCM</td>
<td>Fill</td>
</tr>
<tr>
<td>26-48</td>
<td>Loamy sand</td>
<td>Yellowish brown</td>
<td>Macadam*</td>
<td>Fill</td>
</tr>
<tr>
<td>48-81</td>
<td>Stony loam</td>
<td>Dark brown</td>
<td>NCM</td>
<td>Possible Buried A</td>
</tr>
</tbody>
</table>

*discarded in the field

NCM = No Cultural Material

Four other STs contained soil profiles showing fill over B or C horizons, suggesting disturbance from grading or other earthmoving (see ST 23, ST 32, ST 10 and ST 16 in Appendix A).

On the west side of DiNunzio Road, ST 24 and ST 26 contained precontact lithic artifacts, generally quartz flakes. The majority of these were from ST 24 (Photographs 5, 8, and 10). The interpretation of the soil profiles for these STs was a natural stratigraphic sequence, consisting of an A and B horizon.

ST 24

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Soil Type</th>
<th>Color</th>
<th>Artifacts</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-15</td>
<td>Sandy loam</td>
<td>Dark brown</td>
<td>1 quartz flake</td>
<td>A</td>
</tr>
<tr>
<td>15-58</td>
<td>Loamy sand</td>
<td>Yellowish brown</td>
<td>16 quartz flakes</td>
<td>B</td>
</tr>
</tbody>
</table>

ST 26 was 30m (100 ft) east of ST 24, near DiNunzio Road. Two artifacts, a quartz flake and a fire-cracked rock (FCR), originated from what appeared to be an A horizon (Photograph 11).
ST 26

<table>
<thead>
<tr>
<th>Depth (cm)</th>
<th>Soil Type</th>
<th>Color</th>
<th>Artifacts</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-24</td>
<td>Sandy loam</td>
<td>Dark brown</td>
<td>1 quartz flake, 1 FCR</td>
<td>A</td>
</tr>
<tr>
<td>24-52</td>
<td>Gravelly sandy loam</td>
<td>Brown mixed with dark yellowish brown</td>
<td>NCM</td>
<td>B/rock impasse</td>
</tr>
</tbody>
</table>

In order to further examine the nature and extent of the potential precontact deposits, additional closer-interval radial STs were excavated near ST 24 and ST 26. Ideally these would be placed in each of the four cardinal directions. However, at ST 24, the ROW is very narrow so it was not feasible to test to the north, and the paved road was immediately to the south. Therefore, STs 32, 33, 34, and 35 were excavated at 3m (10 ft) and 6m (20 ft) east and west of ST 24 (Figure 10a). The profile of ST 32 consisted entirely of mixed fill; nevertheless four flakes were recovered (Appendices A and B). ST 33 had one flake from what appeared to be an A horizon and one from the underlying possible B horizon (Appendices A and B). STs 34 and 35 appeared to have natural A and B horizons, but were devoid of any precontact artifacts (Appendix A).

ST 26 was located about 4m (13ft) west of a fire hydrant on the corner of DiNunzio Road (Figure 10a). Four radial STs were also completed here; two to the west (STs 28 and 29), one to the north (ST 30), and one to the east (ST 31) (Photograph 4). STs 28 and 29 appeared to have natural A and B horizon soils, but contained no precontact artifacts (Appendix A). STs 30 and 31 contained levels of what appeared to be fill, or A and B horizon soils that had been disturbed during prior earthmoving and/or through bioturbation (Appendix A). ST 30 had a quartz flake and a possible hammerstone in the first level and four quartz flakes, quartz reduction fragments and historic ceramics and glass in the second level (Photograph 12; see Appendices A and B). ST 31 had modern materials throughout (see Appendices A and B).

The results of the close interval testing around STs 24 and 26 revealed additional precontact artifacts in STs 30, 32, and 33, but of those tests, only ST 33 may have had a natural soil profile (Figure 10a). The remaining close interval STs had disturbed soil profiles, although precontact artifacts of a similar type to those found in potentially non-disturbed STs were found in STs 30 and 32.

The presence of the precontact artifacts across several STs suggests that this area may have once contained an intact precontact deposit, portions of which have since been disturbed, likely through earthmoving associated with roadwork. The locations of the areas containing positive STs are noted on Figure 10a.

7.0 CONCLUSIONS AND RECOMMENDATIONS

The Phase IB field investigation was intended to determine the presence or absence of archaeological resources. The APE was subjected to investigation, with hand excavated STs placed at 15m (50ft) intervals, where feasible, as well as at closer intervals to explore further the location of recovered precontact artifacts. No intact historic period archaeological resources were found, although some STs had historic artifacts in disturbed contexts, as evidenced by the
presence of modern material. Much of the project site was excluded from testing because of
known prior disturbance and steep slopes (greater than 12%).

Two small precontact loci, both on the north side of Sylvan Lake Road and west of DiNunzio
Road, produced a scant number of precontact artifacts of local quartz in several STs. These two
loci are separated by 30m (100 ft). In both locations, the distribution of artifacts was very
limited. The western loci (Locus 1) had three positive STs, spanning 6m (20 ft) east/west.
However, the eastern most of these three tests had a disturbed soil profile. The ROW does not
extend far from existing curb, and so excavations were not expanded to the north. The eastern
loci (Locus 2) had two positive STs that were 3m apart. However, one of the STs had a
disturbed soil profile. At both loci potential archaeological deposits could extend further north
and out of the project site. It is also possible that additional undisturbed archaeological deposits
could be located beneath the extent of the excavated STs in the two loci.

The entirety of the flaked stone assemblage from the two loci is quartz. Some of the material
utilized local quartz cobbles, which suggest that bipolar tool manufacturing techniques were
employed. Others look like primary source quartz from seams or blocky starting forms. This
does not preclude bipolar reduction methods but remains to be further interpreted (Jack Cresson,
personal email communication 11/25/18). The highest number of precontact artifacts came from
ST 24, which contained large quartz flakes, one of which may have been a partially worked
biface that broke in manufacture. The quartz flakes discovered at both loci are mostly large
flakes. Discovery of a small hammerstone is further evidence of stone tool manufacture. A
possible fire-cracked rock may have come from a hearth.

In an attempt to put this archaeological collection in local perspective, it can best be compared to
the Platts Mills Park Site, investigated in nearby Waterbury, which produced a large number of
quartz artifacts (Bianchi and Howson 2015). The lithic artifacts at Platts Mills Park Site were
more numerous, comprising 316 specimens, and the site also produced two sherds of precontact
Woodland-era pottery. A few of the lithics there were not quartz, but the site did have clear
evidence of the creation of tools using local quartz cobbles.

The Phase IB testing was able to determine the horizontal extent of the two loci in the APE
bearing precontact period archaeological materials, west of DiNunzio Road. Based on current
project plans, it appears that the western of the two loci (Locus 1) will not be affected by the
proposed construction. The proposed curbline will be built in the same place as the existing curb
and no other project impacts are planned. The project ROW is wider surrounding the eastern
loci (Locus 2), closer to DiNunzio Road. This locus has been defined as narrow and extending
from the ROW north to the proposed sedimentation fence, and possibly beyond and out of the
project site. It is possible that project plans will affect this locus, including resetting the existing
fire hydrant in this area.

Based on these conclusions, HPI recommends that the two loci identified as positive for
precontact archaeological materials be avoided during any project construction. The loci, plus a
buffer of 5m (16ft) should be marked on construction drawings to minimize any potential
unintended impacts to this location. If avoidance is not possible, then project plans should be
reviewed to determine the extent of any proposed excavation that could impact these areas. A
program of additional archaeological investigation may then be warranted to further delineate the horizontal and vertical extent of any cultural deposits and to determine the significance of any potential resources.
8.0 REFERENCES

Beers, F.W.

Bernstein, David J.

Bianchi, Leonard G. and Jean Howson
2015 *Reconnaissance and Intensive Archaeological Survey, Platts Mill Road Park Site, Naugatuck River Greenway Project, South Main Street and Platts Mills Road, Waterbury, Connecticut.* Prepared for the City of Waterbury and Connecticut Department of Transportation by RBA.

Blodget, William
1792 *Map of Connecticut.*

Braun, E. Lucy

Clark, Richard
1859 *Clark’s Map of Litchfield County, Connecticut.* Richard Clark, Philadelphia.

Cresson, Jack

Doolittle, A.
1787 *A Correct Map of Connecticut from Actual Survey.* Engraved by A. Doolittle, New Haven, CT.

Fairchild Survey of Connecticut
1934 *Aerial Survey of Connecticut 1934 Photograph 07102.*

Findagrave.com

Funk, Robert E.
Gordon, Robert B.

Howson, Jean and Leonard G. Bianchi
2014 Archaeological Assessment: Naugatuck River Greenway Project, South Main Street and Platts Mill Road, Waterbury, CT. Prepared for the CT DOT by RBA.

Institute for American Indian Studies (IAIS)

Jones, Brian D.

2018 Personal email communication with Dawn Brown, HPI. December 17, 2018.

Labadia, Catherine, State Historic Preservation Office.

Lavin, Lucianne

Lewis, J.W. & Co.

Little, Barbara, Erika Martin Seibert, Jan Townsend, John H. Sprinkle, Jr. and John Knoerl

McBride, Kevin A.

McWeeney, Lucinda
1994 Archaeological Settlement patterns and Vegetation Dynamics in Southern New England in the Quaternary. Ph.D. Dissertation Yale University, Newhaven, CT
Moeller, Roger W.

Poirier, David

Prindle, Tara L. and Jonathan M. Lizée

Reeve, Stuart A. and Katharine Forgacs

Robinson Aerial Survey

Rossano, Geoffrey L.

Salwen, Bert

Senich, Karen, State Historic Preservation Office

Snow, Dean R.

United States Department of Agriculture (U.S.D.A.)

United States Federal Census
1820 Watertown, Connecticut.
1830 Watertown, Connecticut.
1840 Watertown, Connecticut.
1850 Watertown, Connecticut.

1860 Watertown, Connecticut.

1870 Watertown, Connecticut.

United States Geological Survey (U.S.G.S.)

Walwer, G.F. and D.N. Walwer

Warren, Moses and George Gillet

1811 *Connecticut from Actual Survey Made in 1811.* Hudson and Goodwin, Hartford, Connecticut.

Watertown, CT

Weston & Sampson

FIGURES
Phase I Archaeological Reconnaissance Survey
Reconstruction of Sylvan Lake Road
Watertown, Litchfield County, Connecticut

Figure 1: Project site on Waterbury, CT 7.5 Minute quadrangle (U.S.G.S. 2016).
Figure 2a: Western portion of project site showing existing conditions (HPI 2018 and Weston & Sampson 2018).
Figure 2b: Eastern portion of project site showing existing conditions (HPI 2018 and Weston & Sampson 2018).
Phase I Archaeological Reconnaissance Survey
Reconstruction of Sylvan Lake Road
Watertown, Litchfield County, Connecticut

Figure 3: Project site on web soil survey (U.S.D.A. 2018).
Phase I Archaeological Reconnaissance Survey
Reconstruction of Sylvan Lake Road
Watertown, Litchfield County, Connecticut

Figure 4: Project site on Clark’s Map of Litchfield County, Connecticut (Clark 1859).
Phase I Archaeological Reconnaissance Survey
Reconstruction of Sylvan Lake Road
Watertown, Litchfield County, Connecticut

Figure 5: Project site on *County Atlas of Litchfield, Connecticut* (Beers 1874).
Phase I Archaeological Reconnaissance Survey
Reconstruction of Sylvan Lake Road
Watertown, Litchfield County, Connecticut

Figure 6: Project site on Waterbury, CT 15 Minute quadrangle (U.S.G.S. 1893).
Phase I Archaeological Reconnaissance Survey
Reconstruction of Sylvan Lake Road
Watertown, Litchfield County, Connecticut

Figure 7: Project site on 1934 aerial photograph (Fairchild Aerial Survey 1934).
Figure 8: Project site on 1951 aerial photograph (Robinson Aerial Survey 1951).
Phase I Archaeological Reconnaissance Survey
Reconstruction of Sylvan Lake Road
Watertown, Litchfield County, Connecticut

Figure 9: Project site on Waterbury, CT 7.5 Minute quadrangle (U.S.G.S. 1968).
Figure 10a: Western portion of project site showing existing conditions, locations of archaeological shovel tests and photographs (HPI 2018 and Weston & Sampson 2018).

Key

- Project site boundaries
- Negative ST numbers and locations
- Positive ST numbers and locations
- Photograph numbers and locations

Precontact artifact Locus 1 (STs 24, 32, and 33) and Locus 2 (STs 26 and 30)
Figure 10b: Eastern portion of project site showing existing conditions, locations of archaeological shovel tests and photographs (HPI 2018 and Weston & Sampson 2018).
PHOTOGRAPHS
Photograph 1. View looking northeast from ST 12 towards #379 Sylvan Lake Road and showing steep slopes on the north side of the road. Falls Avenue is on right.

Photograph 2. View looking east showing the steep slopes on the south side of the road in the middle of the project area.
Photograph 3. View looking east from ST 27 on the west side of the project showing steep slopes on the north side of the road.

Photograph 4. View looking east at shovel testing radials near ST 26 on the northwest corner of DiNunzio Road and Sylvan Lake Road.
Photograph 5. View looking north at ST 24 on the north side of Sylvan Lake Road.

Photograph 6. View looking north at ST 2, located on the south side of the bungalow at #379 Sylvan Lake Road.
Photograph 7. ST 2 north profile.
Photograph 9. Artifacts from ST 22 Level 2 Fill include bottle glass, whiteware and a post-1958 Lincoln cent.

Photograph 10. Quartz flakes from ST 24.
Photograph 11. Quartz flake and possible fire-cracked rock (FCR) from ST 26 Level 1A.
Photograph 12. Artifacts from ST 30 include a quartz flake and quartzite hammerstone from the upper fill stratum, and 4 quartz flakes, 3 quartz chunks, bottle glass, and redware from the lower fill stratum.
APPENDIX A: RECORD OF SHOVEL TEST EXCAVATIONS
<table>
<thead>
<tr>
<th>ST #</th>
<th>Level</th>
<th>Horizon</th>
<th>Depth (cm)</th>
<th>Soil Color</th>
<th>Soil Texture</th>
<th>Artifacts/Reason for Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>Fill 1</td>
<td>0-20</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Tile*, modern bottle glass</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fill 2</td>
<td>20-41</td>
<td>10YR5/4 Yellowish brown</td>
<td>Loamy Sand</td>
<td>Macadam*</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>40-90</td>
<td>10YR53/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM/Water at 75cm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>Fill 1</td>
<td>0-26</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>Fill 2</td>
<td>26-48</td>
<td>10YR5/4 Yellowish brown</td>
<td>Loamy Sand</td>
<td>Macadam*</td>
</tr>
<tr>
<td>3</td>
<td>A?</td>
<td>48-81</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM/I Water at 66cm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>28-49</td>
<td>10YR4/4 Dark yellowish brown</td>
<td>Stony Loamy Sand</td>
<td>Rock Impasse</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>Fill 1</td>
<td>0-42</td>
<td>10YR3/3 Dark brown</td>
<td>Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>42-68</td>
<td>10YR5/4 Yellowish brown</td>
<td>Stony Sandy Loam</td>
<td>Glass, ceramic</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>Fill 1</td>
<td>0-20</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>20-26</td>
<td>10YR5/4 Yellowish brown mixed with 10YR3/3</td>
<td>Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fill 3</td>
<td>26-59</td>
<td>10YR5/6 Yellowish brown</td>
<td>Sandy Loam</td>
<td>Macadam, glass/concrete obstruction</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>Fill 1</td>
<td>0-26</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>26-48</td>
<td>10YR5/4 Yellowish brown</td>
<td>Gravelly Loamy Sand</td>
<td>Macadam*/rock impasse</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>Fill 1</td>
<td>0-28</td>
<td>10YR3/3 Dark brown</td>
<td>Loamy Sand</td>
<td>Glass, ceramic</td>
</tr>
<tr>
<td></td>
<td>Fill 2</td>
<td>28-45</td>
<td>10YR3/3 Dark brown</td>
<td>Gravelly Loamy Sand</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Fill 1</td>
<td>0-20</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>20-32</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sandy Loam</td>
<td>Macadam*, modern bottle glass*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fill? C?</td>
<td>32-60</td>
<td>10YR5/3 Brown</td>
<td>Sandy Gravel</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Fill 1</td>
<td>0-20</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>20-39</td>
<td>10YR4/4 Dark brown</td>
<td>Gravelly Sandy Loam</td>
<td>Macadam*</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>Fill 1</td>
<td>0-21</td>
<td>10YR4/3 Brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>21-40</td>
<td>10YR5/3 Brown</td>
<td>Sandy Loam</td>
<td>Macadam*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C?</td>
<td>40-61</td>
<td>10YR6/4 Light yellowish brown</td>
<td>Sand</td>
<td>NCM/Sterile subsoil</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>Fill 1</td>
<td>0-20</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td></td>
<td>Fill 2</td>
<td>20-40</td>
<td>10YR5/3 Brown</td>
<td>Gravelly Sand</td>
<td>Macadam*, wire nail*</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>Fill 1</td>
<td>0-10</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Modern bottle glass*, plate glass*, Styrofoam*</td>
</tr>
<tr>
<td></td>
<td>Fill 2</td>
<td>10-34</td>
<td>10YR5/3 Brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>Fill 1</td>
<td>0-22</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td></td>
<td>Fill 2</td>
<td>22-52</td>
<td>10YR5/6 Yellowish brown</td>
<td>Stony Sandy Loam</td>
<td>Plastic*, wire nails*/rock impasse</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>Fill 1</td>
<td>0-22</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>22-50</td>
<td>10YR5/3 Brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
</tbody>
</table>

NCM = No Cultural Material
A-1
* = Discarded
Appendix A: Record of Shovel Test Excavations – Sylvan Lake Road, Watertown, CT

<table>
<thead>
<tr>
<th>ST #</th>
<th>Level</th>
<th>Horizon</th>
<th>Depth (cm)</th>
<th>Soil Color</th>
<th>Soil Texture</th>
<th>Artifacts/Reason for Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Fill 3</td>
<td>50-67</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sand</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Fill 1</td>
<td>0-30</td>
<td>10YR3/3 Dark brown</td>
<td>Stony Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>30-37</td>
<td>10YR6/4 Light Yellowish Brown</td>
<td>Sandy Loam</td>
<td>Plastic*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fill 3</td>
<td>37-63</td>
<td>10YR5/3 Brown</td>
<td>Sandy Loam</td>
<td>Ceramic</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Fill?</td>
<td>63-80</td>
<td>10YR5/4 Yellowish Brown</td>
<td>Sandy Loam</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Fill 1</td>
<td>0-22</td>
<td>10YR3/3 Dark brown</td>
<td>Sand</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>22-50</td>
<td>10YR5/6 Yellowish brown mixed with 10YR3/3 Dark Brown</td>
<td>Sandy Loam</td>
<td>Bottle glass, ceramic</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Fill 1</td>
<td>0-21</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Plastic*</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>21-44</td>
<td>10YR5/3 Brown</td>
<td>Stony Loamy Sand</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Fill 0-40</td>
<td>10YR3/3 Dark brown</td>
<td>Stony Sandy Loam</td>
<td>Wire nail*, modern bottle glass*</td>
<td>rock impasse</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Fill 0-23</td>
<td>10YR3/3 Dark brown</td>
<td>Stony Loamy Sand</td>
<td>Modern bottle glass*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>23-40</td>
<td>10YR5/3 Brown mixed with 10YR6/3 Pale brown</td>
<td>Stony Loamy Sand</td>
<td>Macadam*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fill 3</td>
<td>40-73</td>
<td>10YR5/4 Yellowish brown mixed with 10YR6/3 Pale Brown</td>
<td>Stony Sandy Loam</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Fill 1</td>
<td>0-41</td>
<td>10YR3/3 Dark brown</td>
<td>Stony Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>41-85</td>
<td>10YR5/4 Yellowish Brown</td>
<td>Stony Sandy Loam</td>
<td>Can*, modern bottle glass*, porcelain*</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Fill/A</td>
<td>0-54</td>
<td>10YR3/3 Dark brown</td>
<td>Stony Loamy Sand</td>
<td>Brick*, terra cotta*, modern bottle glass*</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Fill 1</td>
<td>0-36</td>
<td>10YR4/3 Brown</td>
<td>Sandy Loam</td>
<td>Ceramic, glass, drain pipe</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>36-82</td>
<td>10YR2/2 Very dark brown</td>
<td>Sandy Loam</td>
<td>Post 1958 cent, concrete, brick, glass, ceramic</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Fill 0-19</td>
<td>10YR4/3 Brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>19-46</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sand</td>
<td>NCM/sterile</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>A</td>
<td>0-15</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Quartz flake</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>15-58</td>
<td>10YR5/4 Yellowish brown</td>
<td>Loamy Sand</td>
<td>Quartz flakes</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>58-75</td>
<td>10YR6/2 Light brownish gray</td>
<td>Sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Fill?</td>
<td>0-25</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill?</td>
<td>25-52</td>
<td>10YR6/4 Light yellowish brown</td>
<td>Stony Loamy Sand</td>
<td>Tape</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>A</td>
<td>0-24</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Quartz flake?, FCR</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>24-52</td>
<td>10YR5/3 Brown mixed with 10YR5/4 Dark yellowish brown</td>
<td>Gravelly Sandy Loam</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Fill?</td>
<td>0-25</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Fill?</td>
<td>25-52</td>
<td>10YR5/4 Yellowish brown</td>
<td>Stony Sandy Loam</td>
<td>Spike*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fill?</td>
<td>52-71</td>
<td>10YR6/4 Light yellowish brown</td>
<td>Sand</td>
<td>NCM</td>
<td></td>
</tr>
</tbody>
</table>

NCM = No Cultural Material
A-2
* = Discarded
Appendix A: Record of Shovel Test Excavations – Sylvan Lake Road, Watertown, CT

<table>
<thead>
<tr>
<th>ST #</th>
<th>Level</th>
<th>Horizon</th>
<th>Depth (cm)</th>
<th>Soil Color</th>
<th>Soil Texture</th>
<th>Artifacts/Reason for Termination</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>1</td>
<td>A</td>
<td>0-21</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>21-47</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sandy Loam</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>A</td>
<td>0-18</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>18-42</td>
<td>10YR5/4 Yellowish brown</td>
<td>Gravelly Sandy Loam</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>Fill?</td>
<td>0-20</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Hammer?, flake, ceramic</td>
</tr>
<tr>
<td>2</td>
<td>Fill?</td>
<td>20-88</td>
<td>10YR5/4 Yellowish brown mixed with 10YR2/2 Very dark brown</td>
<td>Stony Gravelly Sandy Loam</td>
<td>Ceramics, glass/flakes/rodent burrow</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>Fill 1</td>
<td>0-18</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Styrofoam*, wire nail*, modern bottle glass*</td>
</tr>
<tr>
<td>2</td>
<td>Fill 2</td>
<td>18-46</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sandy Loam</td>
<td>Wire nail*, modern bottle glass*</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Fill 3</td>
<td>46-56</td>
<td>10YR5/6 Yellowish brown</td>
<td>Loamy Sand</td>
<td>Modern bottle glass*</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>1</td>
<td>Fill</td>
<td>0-30</td>
<td>10YR3/3 Dark brown mixed w/ 10YR5/4 Yellowish brown and 2.5Y5/6 Light olive brown</td>
<td>Gravelly Loamy Sand</td>
<td>1 flake</td>
</tr>
<tr>
<td>2</td>
<td>Fill</td>
<td>30-60</td>
<td>10YR3/3 Dark brown mixed w/ 10YR5/4 Yellowish brown and 2.5Y5/6 Light olive brown</td>
<td>Gravelly Loamy Sand</td>
<td>3 flakes</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>1</td>
<td>B</td>
<td>60-73</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sandy Loam</td>
<td>NCM/sterile</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>29-75</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>1 flake?</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>1</td>
<td>A</td>
<td>0-16</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Whiteware*</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>16-43</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sandy Loam</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>1</td>
<td>A</td>
<td>0-20</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>Rodent jaw*</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>20-75</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sandy Loam</td>
<td>Rock Impasse</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>1</td>
<td>A</td>
<td>0-32</td>
<td>10YR3/3 Dark brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>32-60</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sandy Loam</td>
<td>NCM/rock impasse</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>A</td>
<td>0-16</td>
<td>10YR4/3 Brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>16-25</td>
<td>10YR5/4 Yellowish brown</td>
<td>Sandy Loam</td>
<td>NCM</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>25-54</td>
<td>10YR5/4 Yellowish brown</td>
<td>Loamy Sand</td>
<td>NCM</td>
<td></td>
</tr>
</tbody>
</table>

NCM = No Cultural Material
* = Discarded
APPENDIX B: ARTIFACT INVENTORY
<table>
<thead>
<tr>
<th>LOCATION</th>
<th>LEVEL/STR</th>
<th>ARTIFACT TYPE</th>
<th>RAW MATERIAL</th>
<th>COLOR</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST4</td>
<td>1F</td>
<td>Bottle glass</td>
<td>clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST4</td>
<td>1F</td>
<td>Whiteware</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST5</td>
<td>3F</td>
<td>Bottle glass</td>
<td>Brown</td>
<td>1 neck fragment</td>
<td></td>
</tr>
<tr>
<td>ST5</td>
<td>3F</td>
<td>Cut glass</td>
<td>clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST7</td>
<td>2F</td>
<td>Insulator</td>
<td>Glass</td>
<td>Brown</td>
<td>partial</td>
</tr>
<tr>
<td>ST7</td>
<td>2F</td>
<td>Bottle glass</td>
<td>Brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST7</td>
<td>2F</td>
<td>Bottle glass</td>
<td>clear</td>
<td>base fragment, embossed "..B 48"</td>
<td></td>
</tr>
<tr>
<td>ST7</td>
<td>2F</td>
<td>Ceramic (3)</td>
<td>Whiteware</td>
<td>thin body</td>
<td></td>
</tr>
<tr>
<td>ST15</td>
<td>3F</td>
<td>Ceramic</td>
<td>Whiteware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST16</td>
<td>2F</td>
<td>Bottle glass</td>
<td>clear</td>
<td>base fragments, embossed "LIQUID" and "2"</td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>1F</td>
<td>Window glass</td>
<td>clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>1F</td>
<td>Bottle glass</td>
<td>clear</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>1F</td>
<td>Ceramic (3)</td>
<td>Whiteware</td>
<td>thick body, 1 base fragment</td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>1F</td>
<td>Ceramic</td>
<td>Porcelain</td>
<td>black floral decoration</td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>1F</td>
<td>Drain pipe</td>
<td>Earthenware</td>
<td>tan</td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>2F</td>
<td>Bottle glass</td>
<td>clear</td>
<td>neck and lip</td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>2F</td>
<td>Bottle glass</td>
<td>light green</td>
<td>embossed "..CEPORT, C..."</td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>2F</td>
<td>Ceramic</td>
<td>Whiteware</td>
<td>thick body, rim</td>
<td></td>
</tr>
<tr>
<td>ST22</td>
<td>2F</td>
<td>Coin</td>
<td>Copper</td>
<td></td>
<td>Lincoln cent, Memorial on rear, 1958+</td>
</tr>
<tr>
<td>ST24</td>
<td>1A</td>
<td>Flake</td>
<td>Quartz</td>
<td>white</td>
<td>large</td>
</tr>
<tr>
<td>ST24</td>
<td>2B</td>
<td>Flake (16)</td>
<td>Quartz</td>
<td>white</td>
<td>14 large</td>
</tr>
<tr>
<td>ST26</td>
<td>1A</td>
<td>Fire cracked rock?</td>
<td>Quartz</td>
<td>white</td>
<td>large, thick</td>
</tr>
<tr>
<td>ST30</td>
<td>1F</td>
<td>Hammerstone</td>
<td>Quartzite</td>
<td>Gray</td>
<td></td>
</tr>
<tr>
<td>ST30</td>
<td>1F</td>
<td>Flake</td>
<td>Quartz</td>
<td>white</td>
<td>thick</td>
</tr>
<tr>
<td>ST30</td>
<td>1F</td>
<td>Ceramic</td>
<td>Whiteware</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST30</td>
<td>2F</td>
<td>Insulator</td>
<td>Whiteware</td>
<td>embossed "250 VOLTS"</td>
<td></td>
</tr>
<tr>
<td>ST30</td>
<td>2F</td>
<td>Ceramic</td>
<td>Whiteware</td>
<td>thick body</td>
<td></td>
</tr>
<tr>
<td>ST30</td>
<td>2F</td>
<td>Bottle glass (6)</td>
<td>clear</td>
<td>1 embossed "N"</td>
<td></td>
</tr>
<tr>
<td>ST30</td>
<td>2F</td>
<td>Ceramic (2)</td>
<td>Redware</td>
<td></td>
<td>1 w/ dark brown manganese glaze</td>
</tr>
<tr>
<td>ST30</td>
<td>2F</td>
<td>Flakes (4)</td>
<td>Quartz</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>ST30</td>
<td>2F</td>
<td>Chunks (3)</td>
<td>Quartz</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>LOCATION</td>
<td>LEVEL/STR</td>
<td>ARTIFACT TYPE</td>
<td>RAW MATERIAL</td>
<td>COLOR</td>
<td>NOTES</td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------</td>
<td>-------------</td>
</tr>
<tr>
<td>ST32</td>
<td>1F</td>
<td>Split pebble</td>
<td>Quartz</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>ST32</td>
<td>2F</td>
<td>Flakes (3)</td>
<td>Quartz</td>
<td>white</td>
<td>1 large, 1 small</td>
</tr>
<tr>
<td>ST33</td>
<td>1A</td>
<td>Flake</td>
<td>Quartz</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>ST33</td>
<td>2B</td>
<td>Flake</td>
<td>Quartz</td>
<td>white</td>
<td></td>
</tr>
</tbody>
</table>
Sent by certified mail

May 17, 2017

Roy Cavanaugh, Director
Department of Public Works
61 Echo Lake Road
Watertown Connecticut 06795

Dear Mr. Cavanaugh:

The Conservation Commission/Inland Wetland Agency of the Town of Watertown at a regular meeting held on May 11, 2017 voted to approve application #1022 subject to conditions to conduct regulated activities associated with the reconstruction of a section of Sylvan Lake Road located between Cedar Ridge Drive and Falls Avenue, Oakville, CT.

Legal Notice of Approval will appear in the Town Times on May 18, 2017. Your permit is enclosed. Please feel free to contact me if you have any questions concerning this permit.

Sincerely,

Moosa M. Rafey
Wetlands Enforcement Officer
Conservation Commission/Inland Wetland Agency Permit #1022
Located on Sylvan Lake Road between Cedar Ridge Road and Falls Avenue,
Oakville Connecticut

This approval permit refers to your application to conduct regulated activities in the Town of Watertown.

The Conservation Commission/Inland Wetland Agency of the Town of Watertown has considered application #1022 with due regard for the matters listed in Section 10 of the Inland Wetlands and Watercourses Regulations of the Town of Watertown. The Commission has found that the proposed activities as shown on a set of plans entitled “Reconstruction of Sylvan Lake Road Project Number L153-0001 From Station 12+00 to Station 30+50.5 Sheets 1, 4, 14, 16, 36, 40, and 43 dated November 2016 90% Submission prepared by Town of Watertown Department of Public Works Division of Engineering” as specified and conditioned below conform to the purpose and provision of said section.

The regulated activities consist of the following:

1. Disturbance of approximately 4,500 Sq. Ft of inland wetland and watercourses
2. Disturbance of approximately 50,965 Sq. Ft of upland review areas
3. Installation of erosion and sediment control measures within regulated areas.

The permit is issued subject to the following conditions and/or modifications:

1. The permittee shall notify Wetlands Enforcement Officer, in writing at least three business days prior to the commencement of work onsite and upon its completion.

2. If the approved activities are not initiated on or before May 11, 2022, said activities shall cease and, if not previously revoked or specifically renewed or extended, this permit shall be null and void. Any request to renew or extend the expiration date of a permit should be filed in accordance with Section 11 of the Inland Wetlands and Watercourses Regulations of the Town of Watertown. Expired permits may not be renewed and the wetland agency may require a new application for regulated activities.

3. All work and all regulated activities conducted pursuant to this approval shall be consistent with the terms and conditions of this permit. Any structures,
excavation, fill, obstructions, encroachment, or regulated activities not specifically identified and approved herein shall constitute a violation of this permit and may result in its modification, suspension, or revocation.

4. This permit is not transferable without the written consent of the Conservation Commission/Inland Wetland Agency.

5. In evaluating this application, the wetland agency has relied on information provided by the applicant. The Agency has also relied on the State Department of Energy and Environmental Protection and Department of Transportation review of the project plans. If such information is subsequently proved to be false, incomplete, or misleading, this permit may be modified, suspended, or revoked and the permittee may be subject to any other remedies or penalties provided by law.

6. No equipment or material including without limitation fill, construction materials, or debris, shall be deposited, placed or stored in any wetland or watercourse and upland review area on or off site unless specifically approved by this permit.

7. This permit is subject to and does not derogate any rights or powers of the Town of Watertown, conveys no property rights or exclusive privileges, and is subject to all public and private rights and to all applicable federal, state and local laws. In conducting and maintaining any activities approved herein, the permittee may not cause pollution, impairment, or destruction of the inland wetlands and watercourses of the Town of Watertown.

8. If the activity approved by the inland wetlands permit also involves activity or a project that requires State DEEP, zoning approval, special permit, variance, or special exception, no work pursuant to the wetlands permit may begin until such approval is obtained.

9. The permittee shall install and maintain erosion and sediment control measures at the site in such an operable condition as to prevent the pollution of wetlands and watercourses. Said controls are to be inspected by the permittee for deficiencies at least once per week and immediately after rains. The permittee shall correct any such deficiencies within 24 hours of said deficiency being found.

10. All regulated activities shall be conducted during dry season and when the water level in the watercourses is low.

This authorization constitutes the permit required by Section 22a-42 of the Connecticut General Statute, as amended.
April 16, 2018

Regulatory Division
File Number: NAE-2018-00882

Roy Cavanaugh, P.E.
Director of Public Works
Town of Watertown
61 Echo Lake Road
Watertown, CT 06795

Dear Mr. Cavanaugh,

RE: Project Name & Location of Work: **Town of Watertown CT, Sylvan Lake Rd and Falls Avenue Improvements**

We received your Connecticut General Permits (CT GPs) Appendix E Self-Verification Notification Form indicating that you plan to conduct the above work within our jurisdiction under Self-Verification of the GPs. We have assigned this file number **NAE-2018-00882**. Please reference this number in any future correspondence with us.

We have recorded this project as permittee self-verification of the CT GPs in our database. You are responsible for ensuring the work meets the terms and conditions of the CT GPs.

If you have any questions, please contact me at (978) 318-8879.

for: Kevin R. Kotelly, P.E.
Chief, Permits and Enforcement Branch

Copy furnished:
CT DEEP, Chief, Land & Water Resources Division – via email
WATER HANDLING PLAN

WATER HANDLING PLAN

1. Install new pipeline and fittings as shown.
2. Install new water main and temporary plastic pipes as shown.
3. Install culverts, extensions, and permanent grouting at downstream end.
4. Install new wall, culvert extension, and permanent grouting at upstream end.
PROPOSED SECTION

EXISTING SECTION
1. Install traffic control devices and temporary control measures.
2. Install temporary as shown on previous plan through the existing roadway to allow vehicles.
3. Remove existing culvert; install east-west drain, make-up, drain and perform grading.

STAGE 2B PLAN

1. Reconnaissance, confinement & erosion control measures as shown.
2. Remove existing culvert, install east-west drain, make-up, drain and perform grading while maintaining flow through the existing culvert, as shown.
3. Reconnaissance and install bridge deck while maintaining flow through the channel.

TOWN OF WATERBURY
DEPARTMENT OF PUBLIC WORKS
DIVISION OF ENGINEERING

RECONSTRUCTION OF SYLVAN (ARE) ROAD

SPECIFICITY:
- 11/28/55
- N/A
- 1/1/56
- 1/1/56

CHANGER STATE
- 11/28/55
- N/A
- 1/1/56
- 1/1/56

TOWN OF WATERBURY
DEPARTMENT OF PUBLIC WORKS
DIVISION OF ENGINEERING

RECONSTRUCTION OF SYLVAN (ARE) ROAD

SPECIFICITY:
- 11/28/55
- N/A
- 1/1/56
- 1/1/56
STAGE 3A PLAN

1. Install traffic control, barriers, and sedimentation and erosion control measures.
2. Install cofferdams as shown by natural flow through the existing channel.
3. Install temporary structures, bridges, riprap and permanent opening.

STAGE 3B PLAN

1. Redevelop cofferdams and sedimentation and erosion control measures as shown.
2. Remove existing temporary structures, riprap and perform dredging while maintaining flow through the existing channel as shown.
3. Remove cofferdams and install embankment while maintaining flow through the channel.